Step of Proof: can-apply-fun-exp-add
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
can-apply-fun-exp-add
:
A
:Type,
n
,
m
:
,
f
:(
A
(
A
+ Top)),
x
:
A
.
(
can-apply(
f
^
n
+
m
;
x
))
{(
can-apply(
f
^
m
;
x
))
& (
can-apply(
f
^
n
;do-apply(
f
^
m
;
x
)))
& do-apply(
f
^
n
+
m
;
x
) = do-apply(
f
^
n
;do-apply(
f
^
m
;
x
))}
latex
by (Auto')
CollapseTHEN ((DupHyp (-1))
CollapseTHEN (((RWO "p-fun-exp-add" (-1))
Co
CollapseTHENA (Auto
)
)
CollapseTHEN (((FLemma `can-apply-compose` [-1])
CollapseTHENA (Auto
C
)
)
CollapseTHEN ((Unfold `guard` ( 0)
)
CollapseTHEN ((Auto
)
CollapseTHEN (((
C
RWO "p-fun-exp-add" 0)
CollapseTHENA (Auto
)
)
CollapseTHEN ((RWO "do-apply-compose" 0)
Co
CollapseTHEN (Auto
)
)
)
)
)
)
)
)
latex
C
.
Definitions
,
,
can-apply(
f
;
x
)
,
suptype(
S
;
T
)
,
S
T
,
{
T
}
,
,
{
x
:
A
|
B
(
x
)}
,
,
A
B
,
A
,
False
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
s
=
t
,
do-apply(
f
;
x
)
,
Type
,
left
+
right
,
Top
,
b
,
T
,
True
,
t
T
,
P
Q
,
x
:
A
B
(
x
)
,
f
^
n
,
x
:
A
.
B
(
x
)
,
P
Q
Lemmas
assert
wf
,
can-apply
wf
,
can-apply-compose
,
do-apply
wf
,
p-fun-exp-add
,
do-apply-compose
origin